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ABSTRACT

The establishment of crosslinks between neighboring satellites in a constellation generally mandates certain
geometric constraints for their relative positions. A neighbor satellite in an adjacent plane must meet certain range,
azimuth and elevation conditions, relative to the “observer” satellite, before the crosslink can be established, and the
links must be shut off when the constraints are no longer met.

The problem of calculating when to turn the links on and off, and of determining where the observer isto
look for its neighbor, is commonly solved by periodically feeding each satellite ephemeredes of al its neighbors or,
alternatively, orbit states of its neighbors, which it can then propagate to any desired time. Of course, afull
ephemeris for, say, four neighbors over severa days would take up considerable memory in an on-board computer,
while afull propagation of the orbit states can be computationally expensive.

A much simpler and faster analytic method is presented here. Acquisition and loss of crosslinks may be
predicted by solving a quadratic equation and following a simple Newton-Raphson iteration scheme. In testsrun on
a SPARC 30 workstation, nine days worth of crosslink events were predicted to within less than a second for each
of four neighborsin less than 30 seconds. The position of a neighboring vehicle, in range, azimuth and elevation
(along with their derivatives) can be found as a closed-form expression in time so that numerical propagation is
unnecessary.

INTRODUCTION

The Iridium Satellite Constellation comprises 66 satellites in Mission orbit and 14 “spare” satellitesin
Storage orbits. All are maintained in near-polar, near-circular frozen orbits. Each Mission satellite communicates
with its four nearest neighbors (fore, aft, right and left) via crosslinks during normal operations, and crosslinks may
be established among some or al of the Storage satellites for testing purposes. The fore and aft neighbors are in the
same orbit plane as the “observer” satellite and thus, because of the near-circularity of the orbits, move very little
with respect to the observer. These crosslinks are in continuous operation. The right and left neighbors, however,
arein different orbit planes and therefore their range, azimuth and elevation with respect to the observer are strong
functions of time. These links are necessarily broken as the satellites approach the poles (or more precisely as they
approach the point of intersection of their respective orbit planes) and must be reestablished some time after they
have passed the intersection point. The reacquisition is generally based on some criteria that must be met for the
range, azimuth and elevation, and the satellite software must be able to predict when and where, on the basis of said
criteria, to look for the neighbors for reacquisition. The utility of the constellation depends upon the satellites
ability to do thisreliably and efficiently.

A common method of giving the observer satellite the information required to reacquire its neighbor is
simply to upload an ephemeris table for the neighbor to the observer. The generation of such atable on the ground
can be computationally expensive and, depending on the frequency of upload, the table may need to be quite
sizeable; hence uploading and storing it on board may be awkward or undesirable. Alternatively, the observer could
be given a neighbor’ s position at some epoch, and it could propagate the relative position through time, using a
search algorithm to locate the times at which the appropriate criteriaare met. This method can be computationally
expensive on-board, which may also be undesirable.



It turns out that the relative motion between the neighbor and the observer is well-approximated (to within
meters) by asimple Fourier expansion in the mean anomaly, employing no terms of frequency larger than four times
the orbit frequency. Closed-form expressions for the range, azimuth and elevation can be derived, along with their
derivatives and other related quantities. The goal in this paper is to derive these closed-form equations and to show
how they can be used to predict the acquisition and loss times of crosslinks.

GEOMETRY & CALCULATIONS

For the sake of conceptual simplicity, let usfirst imagine two satellitesin circular, Keplerian orbits at the
same altitude above the Earth, asin Figure 1. Theinclinations of the orbits can be arbitrary, as can the separation of
their nodes and phasing (i.e. separation of relative positions on their respective orbits). The planes of these two
orbits are separated by an angle a, which can be found from spherical trigonometry as satisfying the equations:
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Hence, if we measure from the ascending nodes we can see that the sign of DWgivesthe sign of a. Itis
already well-known that the line-of-sight vector between any two such satellites describes an ellipsein inertial
space, i.e. the neighbor movesin an ellipse about the observer (References 1-4). However most satellites, Iridium
satellites included, do not occupy an inertial reference frame; the oblong shape of the satellite bus and the resulting

gravity gradient on the vehicle force the satellite’ s frame to rotate at the orbital angular speed. It istherelative
motion in this new frame we are interested in.
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Since our goal isto describe the line-of-sight vector from the observer satellite in orbit 1 to the neighbor
satellite in orbit 2, in the frame of reference of the observer, let us first rotate the coordinate system about the center
of the Earth so as to make the observer’s orbital plane the “equatorial plane,” as shownin Figure 2. In this system,
the neighbor’s “inclination” is simply a, and the system is oriented so that the x-axis is defined by the intersection of
the orbit planes, the z-axis by the observer’s angular momentum vector, and the y-axis is chosen to make up aright-
handed Cartesian system. So, in terms of the satellite’s common radial distance from the center of the Earth, r, and
their true anomalies as measured from the x-axis, f; and f,, we can write the line-of-sight vector as:

¢ cosf,-cosf, U
. _ @ . . ]
r —récosasmfz- smflu. @)
g snasinf, §
Now we can rotate the coordinate system again through an angle f about the z-axis so that the x-axis goes through
the observer satellite. This gives us arelative position vector of
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where the true anomalies are still measured from the orbits’ point of intersection. Finally, we can convert to the SV
body-fixed frame of reference (where the x-axisisin the direction of motion, the z-axis points to the center of the
Earth, and the y-axis isin the direction of negative angular momentum) by the exchange of coordinates X® - 2,
y® X, z® -y sothat
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Now, because we have assumed that the satellites all travel in circular orbits, the line-of-sight vector can be
expressed as a simple function of time. 1f the mean motion of the satellitesis denoted by n and the (constant)
differencein the true anomaliesby Df , wecanwrite f, =nt, f, =nt+Df sothat
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Notice that this vector, which represents the motion of the neighbor with respect to the observer, is actually
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a superposition of two very simple motions: one isa circular motion in the x-z plane with radius I' SI n®>—= and

a . a 0
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oscillation in the perpendicular direction with amplitude r Sina and period — . The result isakind of corkscrew
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path, which doubles back on itself to form a closed loop. If the neighbor satellite isin the same orbit plane as the
observer, however, the motion degenerates to a single fixed point in the x-z plane.

It isuseful and natural to look at the relative motion in spherical coordinates. With azimuth defined asthe anglein
the x-y plane, measured from the +x-axis toward the +y-axis, and elevation as the angle measured from the x-y
plane toward the +z-axis, the range, elevation and azimuth of the neighbor satellite, respectively, are
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From these coordinates we may easily derive range rate, distances of closest and farthest approach, angular rates and
other important quantities.

Usually one thinks of the satellite phasing in their respective orbitsin terms of the differencein true
argument of latitude, mean argument of latitude or true anomaly, and not in terms of the angular distance from the
point of intersection of the two planes. Therefore we relate Df to the difference in true argument of latitude (Du)
through Napier’s analogy:
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and use the value thus derived in Equations (6).

Although we have so far only looked at circular, common-altitude orbits, most satellite constellations do
use frozen orbits, which are very nearly circular, at acommon altitude. Therefore, the preceding examination of the
results thus far gives a good qualitative idea of how the motion of the neighbor satellite looks to the observer
satellite.

Now the very simple picture derived so far must be enhanced somewhat. Frozen orbits are not exactly
circular and they are not quite Keplerian. But the addition of a small eccentricity does not affect the conceptual
framework, except to distort slightly the path of the neighbor. The distortion is represented mathematically as a
power series in eccentricity, so that we write:
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Obviously, A isthe solution we have already found (except that the zero of time can now be
unambiguously defined as the time of the observer’s perigee passage), while the other vectors are found by retracing
the above derivation and using Kepler’s Equation to relate the true anomalies of the satellitesto the time. How far
to extend the series depends on the accuracy required. For afrozen orbit at the upper reaches of LEO € » 0.0013,
so that truncation at the first power of eccentricity suffices to give 10-meter accuracy, whereas inclusion of €
ensures sub-meter accuracy. The vectors used in Equation (8), all simple trigonometric functions of time, are given
explicitly in the Appendix. Each of the quantities therein has to be calculated only once, and then the line-of-sight
vector and all related quantities can be found easily at any desired epoch.

Asfor perturbations, the most important are those dueto J,, J, J; and J,,. For frozen orbits, it happens that
J, is of the same order of magnitude as the eccentricity, while J;, J, and J,, are all of order €’. Sowe could expand
the line-of -sight vector yet again, taking all these terms into account, but in most cases thisis unnecessary. The
purpose and utility of satellite constellations generally depend upon the uniform, repeating rel ative motions among
their satellites. Therefore the satellites are almost always placed in common-inclination orbits, so that their RAAN
rates are synchronized. Thus with common inclinations, common semi-major axes, common eccentricities and
arguments of perigee (for frozen orbits), the effects of all the zonal terms in the geopotential on the satellites’ mean
elements drop completely out. Thisis an inevitable consequence of the lack of dependence of the zonal
perturbations on RAAN, and the averaging of orbit elements over the mean anomaly.

To the extent that the inclinations are not all precisely identical, typical offsets among them (these can be as
largeas 0 0.005) are between first and second order quantities which, when multiplied by J,, may or may not be
important to the analysis. An evaluation must be made as to whether the resulting terms are as large as second order
and whether second order is even required in the analysis. In any case, the main factor isthe growth in the RAAN
difference between the two orbit planes:
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where K isavery small quantity (for Iridium orbitsit is about 1.17x10™° sec™ for maximum offset). If it is deemed
necessary to include this effect, one can either recalculate al the quantities in the Appendix by writing:
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and so on for the other five “constants’ and then following through to find the vector A from Equation (8) asthe
sum of two new vectors: A, (M )+ AL(M )Dt or by writing;
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and so on, and then ultimately folding the trigonometric terms into the original vector A to get termsin kM + KDt
where there were originally termsin simply kKM . Each of these “solutions” makes the calculations of the constants

abit more complicated and increases the number of termsin the A vector (note that the vectors B and C don't
need to be adjusted because of their smaller size), but the additional inconvenience is still more than offset by the
advantage of having closed-form expressions.

Herein lies the main strength of this method: the mean path traced out by each satellite with respect to the
Earth is the Keplerian orhit plus [periodic and secular] terms of order e plus [periodic and secular] terms of order €,
but the motion of one satellite with respect to another is simply the Keplerian relative motion plus [periodic and
secular] terms or order €°. This means that the relative motion vector can be determined for much longer periods of
time than can the Earth-referenced vector, assuming the same accuracy requirements. Ancther strength of this
method is that the line-of-sight vector can be determined at any point in time from an algebraic equation without the
time-consuming operation of having to propagate it from the epoch to the time in question.

Numerical tests of the foregoing equations were made by propagating the mean orbit elements of Iridium
satellites (or, more precisely, their control boxes, since routine station keeping is performed to maintain the vehicles
closeto their ideal positions) and comparing the resulting range, elevation and azimuth with the cal culated values
once per minute for 500 orbit periods. The values of the constants in the Appendix were used without modification
for geopotential perturbations. Typical results are shown in Figures 3a-i for one-day periods starting at 0, 100 and
500 revs. The calculated range diverges from the “actua” (propagated) value by about three meters per revolution,
maximum; thisisindeed smaller than first order in the small quantities.

APPLICATION TO CROSSLINK ACQUISITION & LOSS

The criteria for maintenance of crosslinks between neighboring vehicles apparently vary somewhat among
satellite constellations, as each constellation employs its own unique combination of satellite bus geometry,
crossink hardware and software, signal structure, etc. Ashas aready been mentioned, the observer satellite’ s fore
and aft neighbors hardly move with respect to the observer; thereforeit is not difficult to design a constellation in
which every vehicle maintains continuous crosslinks with its fore and aft neighbors. The challenge to simple,
efficient designisin placing the left and right neighbors such that the constraints on their crosslink availability are
minimized.

The Iridium constellation, for example, was designed so efficiently that whenever a neighbor satelliteis
farther away from the observer satellite than a certain minimum distance, all other criteriafor crosslink acquisition
and maintenance are automatically satisfied. Therefore the right and left crosslinks must be dropped at some
specific time as the vehicles approach each other near their planes’ point of intersection and they must be reacquired
at a specific time as they move apart after that point. At the time of reacquisition, of course, the observer also needs
to know where to “look for” the neighbor.

Note first that Equation (8) gives us the “exact” (to second order in small quantities) position of the
neighbor as afunction of time. We need an inverse equation, if we are to determine when a particular minimum
range will be crossed. But thisisnot available in closed form, so we resort to Newton-Raphson iteration. We know



the range of the neighbor satellite is given approximately by the first of Equations (6). That egquation can be
inverted in closed form, to give:
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There are generally four possible values of M on any 360° interval; these give the mean anomalies of the loss and
reacquisition near the “North Pole” intersection of the planes and the corresponding points near the “ South Pole.”

With these approximate values in hand, we turn to Equation (8), which gives us an expression for the
square of the range:

R? = Ao A+2eA0 B+e?(2A0C+BoB). (12)
The approximate values of M from Equation (11) do not correspond exactly to the desired minimum crosslink range
(we'll call it R.), but give rather the approximate equality:
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An adjustment to the value of M, call it dM, can be found which, when added to M, corresponds better to the sought-
for range, R, , by setting:
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If this adjustment, when added to M, does not yield avalue of R close enough to R, , the process can be iterated until

a satisfactory agreement isreached. Then at the end of the process, when the “true”’ value of M is known,
reacquisition follows from cal culating the azimuth and elevation from Equation (8) applied to the definitions of
those quantities from Equations (6).

This algorithm was implemented on a SPARC 30 workstation to predict nine days worth of crosslink loss
and reacquisition times. Actua satellite data was used to calculate the constants in the Appendix, and afirst
estimate of the four points of interest was made from Equation (11) on the first revolution. Then the estimates were
refined for each point according to Equation (15) until R was calculated to be within ameter of R,. Then on each

subsequent revolution, the final estimates from the previous rev were used as afirst guess (same mean anomalies,
times are exactly one orhit period later), and the iteration process proceeded from there. The entire process took less
than 30 seconds, or about 20-40 times faster than the usual method of propagating ephemeredes for both vehicles
and interpolating between ephemeris points for the events of interest. The two methods disagreed by no more than
0.96 seconds for any event on thisinterval, as can be seen from the time plot of the differencein Figure 4.

CONCLUSION

A closed-form expression for the line-of-sight vector between two neighboring vehiclesin a satellite
constellation has been derived, under the assumption that the satellites are in frozen orbits. The expression involves
simple Fourier series and therefore makes it computationally inexpensive to find the relative position of one satellite
with respect to another at any given epoch in rectangular or spherical coordinates.



The utility of this approach has been demonstrated in this paper by its application to the problem of
determining the times of loss and reacquisition of crosslinks under a particular constraint. The extension of the
method to different or additional constraintsis straightforward.

The author would like to express his thanks to the many people at Boeing Corp. and Iridium Satellite LLC
who made possible the generation, collection and presentation of the data contained herein.
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Figure 1: Schematic diagram of observer (Sat 1) and neighbor (Sat 2) satellites and relevant orbital parameters. The
line-of -sight vector between the two is indicated.
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Figure 2: Motion of the observer and neighbor satellites in aframe of reference where the observer moves along the
“equator.” Inclination of neighbor’s orbit in thisframeisa.
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calculation vs. analytic method presented here) over time.
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APPENDIX

The expression for the line-of-sight vector between two satellites in common-altitude frozen orbits (argument of
perigee frozen at 900) isgiven by

Fé= At) + eB(t) + €C(t) + O(e®) (A1)
where
éA, +A,sin2M + A ;cos2M i
A_ A€ - a
A—aé A,snM + A, cosM a
A, +A,sin2M + A ;cos2M {
éB,sinM +B,, cosM +B,;sin3M +B,,cos3M u
B=ag B, +B,,Sin2M + B, cos2M i (A2)
gB, sinM +B,,cosM + B, sin3M +B,, cos3M {
€C,, +C,,sin2M +C,;cos2M +C,, sin4M +C,;cosdM 4
< _,€ : : u
C=ag C,9nM+C,cosM +C;sin3M +C,, cos3M i
gC, +C,,sin2M +C,,cos2M +C,,sin4M +C,, cos4M
t
In these equations, M is the observer satellite’s mean anomaly and is proportional to time (M =nt = ? ), ais
the nominal semi-major axis, and the coefficients are calculated by first determining the constants:
Q =gn DV\,COSIneighbor = COSI jgerver
2
R= S”’”neighbor SN Gpeorver = (1_ COSIneighbor COSI peerver )COSDV\‘
2
S= SI n DVVCOSI neighbor ; Cos'observer (A3)
T — SI nineighbor Sin iobserver + (1+ COSineighbor COSiobserver )COSDW
2
V =sinDWSINI perver
W= Sinineighbor COSiobserver - COSineighbor Siniobserver cosDW
where DW=W, ;o0 = Wopserver - Then, with DF =f 0 - e @sthedifference in mean argument of

latitude, the coefficients are

A, =ScosDf +T sinDf

A, =- (RcosDf +QsinDf )
A, =-RsinDf +QcosDf
A, =WsinDf -V cosDf
A, =- (WcosDf +VsinDf )
A, =1- T cosDf +SsinDf
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Bxlzg(R+T)+(Q+28)sian +(R- 2T)cosDf +%(T0052Df - Ssin2Df )

B,, =- g(S+Q)+ RsinDf - QcosDf +%(ScosZDf +Tsin2Df )
B,, =- (RcosDf +QsinDf )- %(RCOSZDf +Qsin2Df )
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Cxl:g(S+Q- ScosDf - TsinDf )+%(ScosZDf +T sin 2Df )+%Rsian

o =g(R+T+Rcost +Qsin Df )+%(R- T)cos2Df +%(S+Q)sin2Df
+§(Tcos3Df - Ssin3Df )+§Ssian - %Tcost
Cpa=- g(Q+S+Qcost - RsinDf )+%(T- R)sin 2Df +%(S+Q)c052Df

+§(ScosSDf +Tsin3Dk )+§s,cost +gTsian
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8
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_ - 3Wcos3Df +Vsin3Df )
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C, = 1- 3(R+T +SsinDf - TcosDf )- T cos2Df + Ssin2Df + LognDf
2 4
3

C,, =§(S+Q- RsinDf +QcosDf )+%(Q- S)cos2Df - %(R+T)sin2Df

C,,

+§(Scos3Df +T sin3Df )- gTsian - %Scost

C,, =2(R+T+Rcost +QsinDf )- %[1- R- T +(S- Q)sin2Df |
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